CSC 108H: Introduction to Computer
Programming

Summer 2011

Marek Janicki

Administration

* Next week lecture will be in BA1170
« Assignment 1 marks have been released on Markus.

« Meanwas a 71.
« Assignment 2 has been released.

 Can ask questions at the end.

» Office hours will be held Monday instead of Tuesday
before it is due.

* The midterm will be held June 30" at the regular lecture
time and regular lecture room.

* Going to look to release old midterms this weekend.

June 16 2011

Lists addendum

e As lists are mutable, nested lists can cause
situations in which aliasing is non-obvious.

* Be wary of slicing lists that contain mutable
elements.

* While the slicing creates new lists, the items in
the list are aliases to the original elements.

« S0 you might be changing both lists when you
think you're only changing one.

June 16 2011

Lists addendum.

 + and * are overloaded in the same way that they are for
strings.

e So + will concatenate lists.
« * will take an int, and make that many copies of the list.
* Be wary of nested lists and mutability issues!

e X I n |ist isaboolean operation that tests if x is in the
list.

« Useful because it doesn't spit out an error like index().

« list.pop() removes and returns the last item on the
list.

June 16 2011

Limitations of Lists

» S0 far we have a pretty powerful set of
primitives.

 But lists have a few limitations.

* |n particular, searching through a list takes a lon
time.

* \WWe need to go over every element and check if it's
the one we want.

* Problematic if we only want to alter one small
record.

June 16 2011

Limitations of Lists

 \What if we don't know a lot about the data that
we're getting?

* We can create a list using a loop and .append().
* But what if we have duplicates?

* Well, we can go back through the list after
getting the whole thing and process it.

o Slow.
» Also, we still can't index by the data.
« Sonolist nane[data],onlylist _nanme[i]

June 16 2011

Example

* Alot of searching is based on word counts.

* This is especially true in fixed data bases like
Academic journals.

* One reads through a document, and counts
words; and then normalises the word counts.

e Related documents should have similar
normalised word counts.

* But you don't know what words you're looking
for beforehand.

June 16 2011

Dictionaries

* |n one sentence, dictionaries are (key, value)
pairs. Sometimes they are called maps.
* Python syntax:

{keyO : val ueO, keyl : valuel, ...,
keyn : val uen}

 Dictionaries are of type di ct

» Since they have a type, they can be assigned to a
variable.

» To refer to a value associated with a key in a
dictionary we use di cti onary_nane| key|

June 16 2011

Dictionaries

e Dictionaries are unsorted.

* Dictionary keys must be immutable, but the
values can be anything.

« Cannot be None.

* Once you've created a dictionary you can add

key-value pairs by assigning the value to the
key.

di ctionary nanme[key] = val ue
» Keys must be unique.

June 16 2011

Dictionary methods.

| en(di ct _nane) works in the same way as it
does for strings and lists.

 + and * are not defined for dictionaries.
e di ct. keys() - returns the keys in some order.

e di ct.val ues() -returns the values in some
order.

e dict.itens() -returns the (key, value) pairs
In some order.

 All of these methods have iter* variants that return
e 16 208N€ Keys|values|key-value pairs one by one.

Dictionary methods.

e di ct. has _key(key) -returns Tr ue iff the
dictionary has the key In it.

e di ct. get (key) —returns the value that is
paired with the key, or None if no such key
exists.

 get (key, d) returns d rather than None if no
such key exists.

e dict.clear() -removes all the key-value
pairs from the dictionary.

June 16 2011

Dictionary methods.

e« dict.copy() - copy the entire dictionary.

* Be wary if the dictionary has mutable objects.
« Can have the same issue has with nested lists.

e di ct.update(dict_nane) -adds the key-value pairs in
dict_ name to dict.

« di ct. pop(key) —removes and returns the key-value
pair indexed by the key.

* popi t emreturns the (key, val ue) pair.

June 16 2011

Why dictionaries?

 Dictionaries are useful if you want to have really
big sparse data structures.

* You can implement spreadsheet, or alarms with
dictionaries.

* Orif you get a big amount of data but you're not
quite sure how complete it is.

* S0 you have a bunch of names, but don't know how
many of them you'll actually see.

June 16 2011

Looping over dictionaries.

for key In d:
print key, d[keys]
 Works, but is a bit slow.

for key 1n d.iterkeys():
print key, d[keys]

* This is a bit better.
 However, the order is still arbitrary.
 How can we make the loop ordered?

June 16 2011

Inverting a dictionary.

Sometimes we want to figure out what the key
corresponding to a given value is.

* This is impossible to do naively.
 Thatis, di ct [val ue] will not return the key.

That is we want an identical dictionary, except with
keys and values switched.

If we haven't built the dictionary yet, then we can build
two at the same time, where they are inverses of each
other.

Otherwise we need to build an inverse dictionary.

June 16 2011

A problem.

* While the keys in a dictionary must be unique,
the values don't have this restriction.

* SO0 multiple keys can have the same value.
 How do we build our reverse dictionary?

* We still need to make the values into keys, but
we won't have enough values to give each key
a unique value.

* \We can solve this by pairing the original values
with lists of original keys.

June 16 2011

Assignment 2

June 16 2011

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

