
CSC 108H: Introduction to Computer
Programming

Summer 2011

Marek Janicki

June 16 2011

Administration

● Next week lecture will be in BA1170

● Assignment 1 marks have been released on Markus.

● Mean was a 71.
● Assignment 2 has been released.

● Can ask questions at the end.
● Office hours will be held Monday instead of Tuesday

before it is due.
● The midterm will be held June 30th at the regular lecture

time and regular lecture room.

● Going to look to release old midterms this weekend.

June 16 2011

Lists addendum

● As lists are mutable, nested lists can cause
situations in which aliasing is non-obvious.

● Be wary of slicing lists that contain mutable
elements.

● While the slicing creates new lists, the items in
the list are aliases to the original elements.

● So you might be changing both lists when you
think you're only changing one.

June 16 2011

Lists addendum.

● + and * are overloaded in the same way that they are for
strings.

● So + will concatenate lists.
● * will take an int, and make that many copies of the list.
● Be wary of nested lists and mutability issues!

● x in list is a boolean operation that tests if x is in the
list.

● Useful because it doesn't spit out an error like index().
● list.pop() removes and returns the last item on the

list.

June 16 2011

Limitations of Lists

● So far we have a pretty powerful set of
primitives.

● But lists have a few limitations.
● In particular, searching through a list takes a lon

time.
● We need to go over every element and check if it's

the one we want.

● Problematic if we only want to alter one small
record.

June 16 2011

Limitations of Lists

● What if we don't know a lot about the data that
we're getting?

● We can create a list using a loop and .append().
● But what if we have duplicates?
● Well, we can go back through the list after

getting the whole thing and process it.
● Slow.

● Also, we still can't index by the data.
● So no list_name[data], only list_name[i]

June 16 2011

Example

● A lot of searching is based on word counts.
● This is especially true in fixed data bases like

Academic journals.

● One reads through a document, and counts
words; and then normalises the word counts.

● Related documents should have similar
normalised word counts.

● But you don't know what words you're looking
for beforehand.

June 16 2011

Dictionaries

● In one sentence, dictionaries are (key, value)
pairs. Sometimes they are called maps.

● Python syntax:
{key0 : value0, key1 : value1, ...,
keyn : valuen}

● Dictionaries are of type dict
● Since they have a type, they can be assigned to a

variable.

● To refer to a value associated with a key in a
dictionary we use dictionary_name[key]

June 16 2011

Dictionaries

● Dictionaries are unsorted.
● Dictionary keys must be immutable, but the

values can be anything.
● Cannot be None.

● Once you've created a dictionary you can add
key-value pairs by assigning the value to the
key.

dictionary_name[key] = value

● Keys must be unique.

June 16 2011

Dictionary methods.

● len(dict_name) works in the same way as it
does for strings and lists.

● + and * are not defined for dictionaries.
● dict.keys() - returns the keys in some order.

● dict.values() - returns the values in some
order.

● dict.items() - returns the (key, value) pairs
in some order.
● All of these methods have iter* variants that return

the keys|values|key-value pairs one by one.

June 16 2011

Dictionary methods.

● dict.has_key(key) - returns True iff the
dictionary has the key in it.

● dict.get(key) – returns the value that is
paired with the key, or None if no such key
exists.
● get(key, d) returns d rather than None if no

such key exists.

● dict.clear() - removes all the key-value
pairs from the dictionary.

June 16 2011

Dictionary methods.

● dict.copy() - copy the entire dictionary.

● Be wary if the dictionary has mutable objects.
● Can have the same issue has with nested lists.

● dict.update(dict_name) - adds the key-value pairs in
dict_name to dict.

● dict.pop(key) – removes and returns the key-value
pair indexed by the key.

● popitem returns the (key, value) pair.

June 16 2011

Why dictionaries?

● Dictionaries are useful if you want to have really
big sparse data structures.
● You can implement spreadsheet, or alarms with

dictionaries.

● Or if you get a big amount of data but you're not
quite sure how complete it is.
● So you have a bunch of names, but don't know how

many of them you'll actually see.

June 16 2011

Looping over dictionaries.

for key in d:

print key, d[keys]

● Works, but is a bit slow.
for key in d.iterkeys():

print key, d[keys]

● This is a bit better.
● However, the order is still arbitrary.
● How can we make the loop ordered?

June 16 2011

Inverting a dictionary.

● Sometimes we want to figure out what the key
corresponding to a given value is.

● This is impossible to do naively.
● That is, dict[value] will not return the key.

● That is we want an identical dictionary, except with
keys and values switched.

● If we haven't built the dictionary yet, then we can build
two at the same time, where they are inverses of each
other.

● Otherwise we need to build an inverse dictionary.

June 16 2011

A problem.

● While the keys in a dictionary must be unique,
the values don't have this restriction.

● So multiple keys can have the same value.
● How do we build our reverse dictionary?
● We still need to make the values into keys, but

we won't have enough values to give each key
a unique value.

● We can solve this by pairing the original values
with lists of original keys.

June 16 2011

Assignment 2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

